91 research outputs found

    Physics and Applications of Laser Diode Chaos

    Full text link
    An overview of chaos in laser diodes is provided which surveys experimental achievements in the area and explains the theory behind the phenomenon. The fundamental physics underpinning this behaviour and also the opportunities for harnessing laser diode chaos for potential applications are discussed. The availability and ease of operation of laser diodes, in a wide range of configurations, make them a convenient test-bed for exploring basic aspects of nonlinear and chaotic dynamics. It also makes them attractive for practical tasks, such as chaos-based secure communications and random number generation. Avenues for future research and development of chaotic laser diodes are also identified.Comment: Published in Nature Photonic

    Impaired Representation of Geometric Relationships in Humans with Damage to the Hippocampal Formation

    Get PDF
    The pivotal role of the hippocampus for spatial memory is well-established. However, while neurophysiological and imaging studies suggest a specialization of the hippocampus for viewpoint-independent or allocentric memory, results from human lesion studies have been less conclusive. It is currently unclear whether disproportionate impairment in allocentric memory tasks reflects impairment of cognitive functions that are not sufficiently supported by regions outside the medial temporal lobe or whether the deficits observed in some studies are due to experimental factors. Here, we have investigated whether hippocampal contributions to spatial memory depend on the spatial references that are available in a certain behavioral context. Patients with medial temporal lobe lesions affecting systematically the right hippocampal formation performed a series of three oculomotor tasks that required memory of a spatial cue either in retinal coordinates or relative to a single environmental reference across a delay of 5000 ms. Stimulus displays varied the availability of spatial references and contained no complex visuo-spatial associations. Patients showed a selective impairment in a condition that critically depended on memory of the geometric relationship between spatial cue and environmental reference. We infer that regions of the medial temporal lobe, most likely the hippocampal formation, contribute to behavior in conditions that exceed the potential of viewpoint-dependent or egocentric representations. Apparently, this already applies to short-term memory of simple geometric relationships and does not necessarily depend on task difficulty or integration of landmarks into more complex representations. Deficient memory of basic geometric relationships may represent a core deficit that contributes to impaired performance in allocentric spatial memory tasks

    Untangling knowledge creation and knowledge integration in enterprise wikis

    Get PDF
    A central challenge organizations face is how to build, store, and maintain knowledge over time. Enterprise wikis are community-based knowledge systems situated in an organizational context. These systems have the potential to play an important role in managing knowledge within organizations, but the motivating factors that drive individuals to contribute their knowledge to these systems is not very well understood. We theorize that enterprise wiki initiatives require two separate and distinct types of knowledge-sharing behaviors to succeed: knowledge creation (KC) and knowledge integration (KI). We examine a Wiki initiative at a major German bank to untangle the motivating factors behind KC and KI. Our results suggest KC and KI are indeed two distinct behaviors, reconcile inconsistent findings from past studies on the role of motivational factors for knowledge sharing to establish shared electronic knowledge resources in organizations, and identify factors that can be leveraged to tilt behaviors in favor of KC or KI

    Legal linked data ecosystems and the rule of law

    Get PDF
    This chapter introduces the notions of meta-rule of law and socio-legal ecosystems to both foster and regulate linked democracy. It explores the way of stimulating innovative regulations and building a regulatory quadrant for the rule of law. The chapter summarises briefly (i) the notions of responsive, better and smart regulation; (ii) requirements for legal interchange languages (legal interoperability); (iii) and cognitive ecology approaches. It shows how the protections of the substantive rule of law can be embedded into the semantic languages of the web of data and reflects on the conditions that make possible their enactment and implementation as a socio-legal ecosystem. The chapter suggests in the end a reusable multi-levelled meta-model and four notions of legal validity: positive, composite, formal, and ecological

    Spatial navigation deficits — overlooked cognitive marker for preclinical Alzheimer disease?

    Get PDF
    Detection of incipient Alzheimer disease (AD) pathophysiology is critical to identify preclinical individuals and target potentially disease-modifying therapies towards them. Current neuroimaging and biomarker research is strongly focused in this direction, with the aim of establishing AD fingerprints to identify individuals at high risk of developing this disease. By contrast, cognitive fingerprints for incipient AD are virtually non-existent as diagnostics and outcomes measures are still focused on episodic memory deficits as the gold standard for AD, despite their low sensitivity and specificity for identifying at-risk individuals. This Review highlights a novel feature of cognitive evaluation for incipient AD by focusing on spatial navigation and orientation deficits, which are increasingly shown to be present in at-risk individuals. Importantly, the navigation system in the brain overlaps substantially with the regions affected by AD in both animal models and humans. Notably, spatial navigation has fewer verbal, cultural and educational biases than current cognitive tests and could enable a more uniform, global approach towards cognitive fingerprints of AD and better cognitive treatment outcome measures in future multicentre trials. The current Review appraises the available evidence for spatial navigation and/or orientation deficits in preclinical, prodromal and confirmed AD and identifies research gaps and future research priorities

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Human and Machine Learning

    Get PDF
    In this paper, we consider learning by human beings and machines in the light of Herbert Simon’s pioneering contributions to the theory of Human Problem Solving. Using board games of perfect information as a paradigm, we explore differences in human and machine learning in complex strategic environments. In doing so, we contrast theories of learning in classical game theory with computational game theory proposed by Simon. Among theories that invoke computation, we make a further distinction between computable and computational or machine learning theories. We argue that the modern machine learning algorithms, although impressive in terms of their performance, do not necessarily shed enough light on human learning. Instead, they seem to take us further away from Simon’s lifelong quest to understand the mechanics of actual human behaviour
    corecore